14 research outputs found

    Negative Komar mass of single objects in regular, asymptotically flat spacetimes

    Get PDF
    We study two types of axially symmetric, stationary and asymptotically flat spacetimes using highly accurate numerical methods. One type contains a black hole surrounded by a perfect fluid ring and the other a rigidly rotating disc of dust surrounded by such a ring. Both types of spacetime are regular everywhere (outside of the horizon in the case of the black hole) and fulfil the requirements of the positive energy theorem. However, it is shown that both the black hole and the disc can have a negative Komar mass. Furthermore, there exists a continuous transition from discs to black holes even when their Komar masses are negative

    Negative Komar Masses in Regular Stationary Spacetimes

    Get PDF
    A highly accurate multi-domain spectral method is used to study axially symmetric and stationary spacetimes containing a black hole or disc of dust surrounded by a ring of matter. It is shown that the matter ring can affect the properties of the central object drastically. In particular, by virtue of the ring's frame dragging, the so-called Komar mass of the black hole or disc can become negative. A continuous transition from such discs to such black holes can be found

    The Extreme Distortion of Black Holes due to Matter

    Get PDF
    A highly accurate computer program is used to study axially symmetric and stationary spacetimes containing a Black Hole surrounded by a ring of matter. It is shown that the matter ring affects the properties of the Black Hole drastically. In particular, the absolute value of the ratio of the Black Hole's angular momentum to the square of its mass not only exceeds one, but can be greater than ten thousand (|J|/M2 > 104). Indeed, the numerical evidence suggests that this quantity is unbounded

    Equilibrium Configurations of Homogeneous Fluids in General Relativity

    Full text link
    By means of a highly accurate, multi-domain, pseudo-spectral method, we investigate the solution space of uniformly rotating, homogeneous and axisymmetric relativistic fluid bodies. It turns out that this space can be divided up into classes of solutions. In this paper, we present two new classes including relativistic core-ring and two-ring solutions. Combining our knowledge of the first four classes with post-Newtonian results and the Newtonian portion of the first ten classes, we present the qualitative behaviour of the entire relativistic solution space. The Newtonian disc limit can only be reached by going through infinitely many of the aforementioned classes. Only once this limiting process has been consummated, can one proceed again into the relativistic regime and arrive at the analytically known relativistic disc of dust.Comment: 8 pages, colour figures, v3: minor additions including one reference, accepted by MNRA

    A universal constraint between charge and rotation rate for degenerate black holes surrounded by matter

    Full text link
    We consider stationary, axially and equatorially symmetric systems consisting of a central rotating and charged degenerate black hole and surrounding matter. We show that a2+Q2=M2a^2+Q^2=M^2 always holds provided that a continuous sequence of spacetimes can be identified, leading from the Kerr-Newman solution in electrovacuum to the solution in question. The quantity a=J/Ma=J/M is the black hole's intrinsic angular momentum per unit mass, QQ its electric charge and MM the well known black hole mass parameter introduced by Christodoulou and Ruffini.Comment: 19 pages, 2 figures, replaced with published versio

    Negative Komar Mass of Single Objects in Regular, Asymptotically Flat Spacetimes

    Full text link
    We study two types of axially symmetric, stationary and asymptotically flat spacetimes using highly accurate numerical methods. The one type contains a black hole surrounded by a perfect fluid ring and the other a rigidly rotating disc of dust surrounded by such a ring. Both types of spacetime are regular everywhere (outside of the horizon in the case of the black hole) and fulfil the requirements of the positive energy theorem. However, it is shown that both the black hole and the disc can have negative Komar mass. Furthermore, there exists a continuous transition from discs to black holes even when their Komar masses are negative.Comment: 7 pages, 2 figures, document class iopart. v2: changes made (including title) to coincide with published versio

    From Geometry to Numerics: interdisciplinary aspects in mathematical and numerical relativity

    Full text link
    This article reviews some aspects in the current relationship between mathematical and numerical General Relativity. Focus is placed on the description of isolated systems, with a particular emphasis on recent developments in the study of black holes. Ideas concerning asymptotic flatness, the initial value problem, the constraint equations, evolution formalisms, geometric inequalities and quasi-local black hole horizons are discussed on the light of the interaction between numerical and mathematical relativists.Comment: Topical review commissioned by Classical and Quantum Gravity. Discussion inspired by the workshop "From Geometry to Numerics" (Paris, 20-24 November, 2006), part of the "General Relativity Trimester" at the Institut Henri Poincare (Fall 2006). Comments and references added. Typos corrected. Submitted to Classical and Quantum Gravit

    Intermediate and extreme mass-ratio inspirals — astrophysics, science applications and detection using LISA

    Get PDF
    Black hole binaries with extreme (gtrsim104:1) or intermediate (~102–104:1) mass ratios are among the most interesting gravitational wave sources that are expected to be detected by the proposed laser interferometer space antenna (LISA). These sources have the potential to tell us much about astrophysics, but are also of unique importance for testing aspects of the general theory of relativity in the strong field regime. Here we discuss these sources from the perspectives of astrophysics, data analysis and applications to testing general relativity, providing both a description of the current state of knowledge and an outline of some of the outstanding questions that still need to be addressed. This review grew out of discussions at a workshop in September 2006 hosted by the Albert Einstein Institute in Golm, Germany

    Intermediate and extreme mass-ratio inspirals—astrophysics, science applications and detection using LISA

    Full text link
    corecore